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Summer 2022 Principal’s Examiner Report 

International GCSE Mathematics 

4MA1 Paper 1H 

 

Students who were well prepared for this paper were able to make a good attempt at a majority 

of questions.  

 

Students were less successful in producing a full treatment for surds (Q16), differentiating 

functions in context (Q17) and completing the square, particularly for negative quadratics (Q24).  

 

On the whole, working was shown and mostly easy to follow. Those students who produce 

untidy, unstructured written work to the extent that their writing is almost illegible risk losing 

marks. There were some instances where students failed to read the question properly; an 

example being question 19. Here some students either did not realise they had to use the 

formula for the area of sector, but instead used the formula for arc length, or alternatively 

multiplied the wrong area by a factor of two. 

 

Finding probabilities in a context, transformations of functions, gaining answers from 

histograms and manipulation of algebra in later questions, proved to be challenging for many.  

Reverse percentage in a context, (Q6a) also caused difficulty for less able students. 

 

Generally, problem solving, and questions assessing mathematical reasoning (Q2, Q4, Q7, Q10, 

and Q13), were tackled well. 

 

Question 1 

(a) Most students were able to gain M1 by recognising that the sequence increased by adding 

4 each time and hence writing 4n as part of their answer. Some students wrote 4n + 3 or even 

n + 4. Other students did understand that the correct expression was 4n ⎼ 3 but wrote their 

answer with a variable n on both sides of an equation as in  n = 4n ⎼ 3, losing the accuracy mark 

in the process. Some students used the formula for the nth term of a sequence and credit was 

given if their answers were left in an unsimplified form, i.e in the form 

1 + (n – 1) × 4. Students need to be encouraged to check their rule to see if it works for each 

term in the sequence. 

(b) Many students answered this part of the question poorly. Some used their answer for part 

(a), not realizing that a different sequence had been offered. Answers left in an unsimplified 

form, e.g 3(2m) + 5 gained the 1 mark available.  

 

 

 



 

Question 2 

Many students could work out the probability of the spinner landing on 2 or on 4 by calculating 

1 – (0.26 + 0.18) then dividing by 2. It was interesting to see students employ different methods 

to find the final answer. The common approach was to work out 45 ÷ 0.18 to find the total 

number of spins as 250. Some students who worked out 250 did not know how to work out an 

estimate for the number of times the spinner will land on 4 and gave up. The more able 

students multiplied 250 by 0.28 to find the final answer of 70. A common incorrect method was 

to add 0.26 to 0.18 to find 0.44 and then divide by 2 to find 0.22 for the probability of the spinner 

landing on either 2 or 4.  This lost the first mark, but they could often recover to find 250 later. 

These then lost the final two marks by multiplying 250 by 0.22. A few wrote their answer 

incorrectly as a fraction, (70/ 250) and lost the final accuracy mark. 

 

Question 3 

Both parts were well answered, although some students got the concepts of LCMs and HCFs 

mixed up. 

(a) Most students who found the HCF, 28, in part (a) used either a factor tree or repeated 

division but a minority either used lists of factors or showed no working at all. Venn diagrams 

were occasionally used, usually successfully, in both parts (a) and (b). 7 and 14 were common 

wrong answers. Some students could not extract the HCF, even after finding all the factors. An 

answer of 22 × 7 was accepted for full marks. 

(b) A range of approaches were also used to find the LCM. Expressing 60 and 72 as lists of 

multiples was the usual method but LCM = 
60 . 72𝐻𝐶𝐹  was also seen occasionally. Several incorrect 

products were stated as a final answer including 2 × 33 × 52 , 2 × 32 × 52 , 2 × 33 × 53 and 32 × 52. 

Again, a correct product (23 × 32 × 5) was accepted for full marks. 

 

Question 4 

For some students this was a challenging question early in the paper but was generally well 

answered. Most students set up the equation 7x + 3x + 8x = 360 and solved for x to find 20°. 

After working out 20° they then showed a complete method by dividing 360° by the exterior 

angle (40°). Some students worked out the value of x and proceeded to divide 360° by 140° 

confusing interior and exterior angles. Some students used the sum of the interior angles 

formula incorrectly by writing 
(𝑥 , 2) . 180𝑥  thus finding the incorrect answer. A minority of 

students assumed that angles around a point add up to 180°.  

 

 

 

 

 



 

Question 5 

(a) Generally, this part was answered well, however, a common error was −10 or +10 rather 
than −24 in their final answer. Other students also had difficulty in simplifying −6n + 

4n correctly.  Overall, the errors made were usually down to poor arithmetic skills when dealing 

with negative numbers. A small minority of students expanded the brackets correctly and then 

proceeded to solve the original quadratic putting n = 6 or n = – 4, this was not penalized provided 

the correct simplified expansion was seen beforehand.  

(b) Many students gained all 3 marks for this question, demonstrating an excellent 

understanding of, and ability to manipulate the algebra in this linear equation. Students often 

cleared the fraction by multiplying the LHS by 4. A failure to use brackets when multiplying both 

sides by 4 led to the loss of the first mark. Mistakes also crept in when some students attempted 

to gather their x or number terms; adding instead of subtracting or vice versa. Students who 

multiplied the LHS incorrectly were still given credit for gathering their x and number terms 

correctly using their 4-term equation. 

Students who used the alternative method given in the mark scheme and separated the right 

side of the equation into two fractions, were generally unable to do so correctly. It was common 

for students to divide only one term by 4, resulting in 0.75x – 5. However, if they isolated their 

x and number terms correctly, subsequently they could still gain the second M mark. 

 

Question 6 

(a) Many students were successful in this question where they understood that the given value 

had already been increased by 4%. The incorrect method of finding 4% of 634 400 and then 

subtracting or adding was seen. Careful reading of the question would help students realise 

that the 4% is a percentage of the original price and not 4% of the given price. Many students 

worked out 610 000 but did not answer the question regarding the service charge band, thus 

losing the accuracy mark. 

(b) This part of the question was answered well. Many students realised that they needed to 

subtract 15% from 100% to find 85%. A correct method was used to find 0.7225 or 72.25 by 

multiplying 0.85 by 0.85. Some students lost marks as they did not realise, they had to subtract 

from 1 or 100% to find the final answer. Some students found 0.2775 and then did not give 

their final answer as a percentage. Some students nominated and used an initial amount of 

their choice to find the percentage depreciation. 

 

 

 

 

 

 



 

Question 7 

This question often gained full marks. Many students substituted into the given formula 

correctly, 1.4 = 72(𝑎𝑟𝑒𝑎) and a majority rearranged correctly for the area obtaining 
721.4 or 51.4. A 

minority of students rearranged incorrectly, 72 × 1.4, thus losing the final 3 marks of the 

question. Once 51.4 was found the students multiplied this by 18 to find the correct answer. 

Some students, having worked out 51.4, proceeded to equate this to and unnecessarily 

worked out the radius. Their final step was to substitute this radius value into the formula for 

the volume of a cylinder to obtain the correct answer. Premature ‘rounding’, however, did lead 
to some students losing the final mark. 

 

Question 8 

Parts (a) and (b) were answered well. 

 

Question 9 

Parts (a) and (b) were answered well. 

(c) The majority of students either scored full marks for the correct answer, 8k6m12, or gained 

one mark out of two for getting two out of the three components correct by offering 8k6 or 8m12 

or k6m12 as part of their answer. 

 

Question 10 

This was a challenging question. Many students did not realise that they had to find the length 

of a line segment using . Generally, students who had worked out ±8 and 

±15 went on to successfully find the distance between the two centres of the circles, using 

Pythagoras. Those students who attempted to solve this by scale drawing were usually 

unsuccessful. 

Once the students had worked out 17 as their answer to part (a), they often realised that this 

was less than the sum of the radii (19) and hence the circles must overlap. 

 

Question 11 

(a) Those students who recognised that this question involved a difference of two squares 

usually gained full marks. Students gained one mark for writing (3𝑥 - 2𝑦)(3𝑥 - 2𝑦) or (3𝑥)2 ,(2𝑦)2. It was disappointing to see answers such as, (9𝑥 , 4𝑦)(𝑥 + 𝑦) or 𝑥(9𝑥) , 𝑦(4𝑦) for 

example. 

(b) Many students found this part of the question difficult. Most understood a common 

denominator was required and attempted to find one. This usually resulted in a denominator 

of 32x. Overall, few made complete progress with this question, often leaving their final answer 

as 
20𝑥,2432𝑥 . There was clear evidence of incorrect cancelling throughout. A failure to deal with the 
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negative sign was a common occurrence.  Some students incorrectly wrote their solution by 

giving the final answer as 
5𝑥,68  omitting the x in the denominator. 

It was disappointing to see candidates failing to score at all because they attempted to expand 

the brackets in the numerator and to work with a common denominator, all in a single step.   

 

Question 12 

(a) The majority of students were able to correctly complete the probabilities on the tree 

diagram. Some gave fractions rather than probabilities. A student could lose one mark by 

labelling the branch which had probabilities 0.3 and 0.7 as 0.6 and 0.4. 

(b) This part was usually done well, sometimes taking advantage of the follow through from the 

tree diagram for full marks. Just a few students added probabilities, producing a probability 

value greater than one. 

 

Question 13 

Whilst many correct answers were seen, some students were unable to successfully navigate 

their way through this problem. It was not uncommon, for example, to see students add 
38 with 

45% to obtain either 
3340 or 82.5 or 0.825 and then not realising they had to subtract from 1 or 

100%. Students who obtained 
740 then correctly went on to find $2320 (the total cost of the 

holiday). Some students gave their final answer as 2320 thus losing the final two marks. A 

common incorrect approach was to write down 
38 + 45(%) + 406 = total cost and then try to 

manipulate their working to find the answer. Students are encouraged to read the question 

carefully and show their working. 

 

Question 14 

(a) This part of the question was answered well. Credit was given for leaving their answer as 
204  

but students should give their answer as a single number. 

(b) Those who knew how to find the inverse of a function sometimes found the algebraic 

techniques required too challenging, particularly, collecting like terms in order to factorise. Such 

students usually scored one mark for getting as far as, for example, 𝑦(𝑥 , 6) = 2𝑥 or 𝑥(𝑦 , 6) = 2𝑦. Full marks required an ability to rearrange equations. The latter was beyond 

some students, often because they did not grasp the principal of using factorisation to isolate 

the intended subject of the formula. 

 

 

 

Question 15 



 

It was encouraging to see many students accessing this question for one or two marks at least. 

Many students worked out DDD or WLL in any order. The more able students worked out that 

WLL could be a combination in 3 different ways and then went on to find the correct answer. 

Some students simply worked out the probabilities for DDD and WLL then added these 

probabilities together to find 0.137. Another common incorrect approach was to find 3 × DDD 

and  3 × WLL and then add up these probabilities to reach 0.411. 

 

Question 16 

This was a challenging question for many students. It is well known that modern calculators can 

manipulate surds and produce results automatically. Therefore, steps had to be shown to get 

the LHS to be in the form of the RHS. Many students had difficulty in rationalising the 

denominator of 
12√2+1 by not multiplying the numerator and denominator by 

√2+1√2+1.  The correct 

expression was directly possible from the calculator, so it was surprising how many gave an 

incorrect answer. Students had also to show that (√2)5 was equal to 4√2 or 2√8 or √32, for the 

first method mark. Students who rationalised the denominator to find 12√2 + 12 and then 

simplified their expression to 8√2 + 12 or 12√2 , √32 had difficulty reaching the same surd 

form as the RHS 

 

Question 17 

Students who understood that the question required 𝑠 = 4𝑡2 + 125𝑡  to be differentiated usually 

managed to successfully obtain 8t but many found dealing with 
125𝑡  a step too far. Many 

students did not understand that 
125𝑡  had to be written as 125𝑡,1 and then differentiated. A 

common incorrect expression written for 
125𝑡  was 125t and that was differentiated giving an 

incorrect formula of 𝑣 = 8𝑡 + 125.  

Students who obtained 𝑣 = 8𝑡 , 125𝑡,1 and then equated this to zero did not have the 

algebraic skills required to rearrange the equation to reach t = 2.5  

There were some excellent responses from more able students showing a clear method to 

reach an answer of 75. 

 

Question 18 

Many students recognised that the first part of the question was the application of the cosine 

rule. As such, most made a successful start to the problem. Many students substituted the 

correct values into the cosine rule to give a value of 18.6 for AC. More able students identified 

the need to then use the sine rule and they applied it accurately to reach the final answer of 

28.2°. Other methods were equally prevalent including a second application of the cosine rule. 

It was pleasing to see many students writing their methods clearly.   

 



 

The students are reminded that the formula for the cosine rule and the sine rule is given on the 

formula sheet as some students quoted the cosine rule and/or the sine rule incorrectly. 

 

Question 19 

This question had a very mixed response and was a good differentiator at the top end of the 

grades. Students could recall the formula for the area of a sector and the area of a circle. Some 

students correctly found the area of the sector as 𝜋 . (𝑟 + 7)2 . 45360 and the area of the circle as 𝜋 . (𝑟 , 2)2 then set up a correct equation. However, weak algebraic manipulations of the 

equation lead to an incorrect quadratic equation. At this stage the students gained two marks. 

It was encouraging to see students using the quadratic formula to work out the value of the 

radius thus gaining a mark. Some students worked out the correct values of r and then 

incorrectly wrote down the value of r as 0.2.  

Some less able students equated their equations to zero and tried to solve the quadratic giving 

answers of 2 and ⎼7 or used the formula for the arc length to try to set up an equation.  

Overall, the more able students progressed through the question and gained full marks. 

However, even many able students did not spot that their algebra could be simplified 

considerably by cancelling terms at an early stage. Hence π was present until the very final 

stages in many cases. A trial and improvement approach was not an acceptable method. 

 

Question 20 

In part (i) those students who realised the transformation represented a translation of (20) gave 

the correct coordinates. Many students left this question blank failing to understand the topic 

of transformations when applied to functions. 

In part (ii) many students did not identify that the transformation was a stretch in the y direction. 

Only the more able students gained this mark. Again, there were many blank responses. 

 

Question 21 

Many correct answers were seen from those students who appreciated that the area of each 

bar is proportional to frequencies in histograms. Most students made some attempt at 

answering the question and sometimes produced a mass of figures, but it was not always clear 

as to what the figures represented; it is incumbent on the student to ensure that they make 

their method of solution clear. Usually ,the most efficient method was to correctly calculate the 

frequency density values and put these on the vertical axis. Students who did this inevitably 

reached the correct answer, although there was still some misinterpretation of the range 

required in the question. 

 



 

Several students used the vertical scale as a frequency scale thereby ignoring the column 

width, this often led to incorrect answers being seen, and hence students were unable to earn 

any credit. 

 

Question 22 

The formula for the curved surface area of a cone is given on the formula sheet. Many students 

used this to set up the equation 580π = π × 20 × l and found the value of l (slant height) as 29 

gaining the first two marks. A common error at this stage was to write the equation as 580 = π 

× 20 × l and then finding an incorrect value of l (= 9.23). Unfortunately, this led to all consequent 

marks being lost as the student’s slant height was less than the radius of the cone. Students 

who found the correct slant height (l) progressed to find the height of the cone by using 

Pythagoras theorem. For the fourth method mark a complete method was required to work 

out the volume of the solid which was achieved successfully by more able students. The most 

common slip was to miss out the π in 
16 0003 𝜋 or in 2800π leading to an incorrect answer. Some 

students gave their answer as a truncated decimal, 8133.3, losing the final accuracy mark as 

the requirement was for an exact answer. 

 

Question 23 

There were two approaches to this question: using exterior angles or using interior angles.  

 

Students using the interior angle approach identified the common difference as being ⎼2 and 

the first term as 177 and then correctly substituted into the formula for the sum of an arithmetic 

series finding 
𝑛2 [2(177) + (𝑛 , 1)(,2)\. The weaker students equated this to 360° and then tried 

to formulate a quadratic equation. The more able students obtained the correct equation by 

equating the sum to (𝑛 , 2) . 180 and then setting up a correct quadratic equation. Some 

students factorised incorrectly and obtained (𝑛 + 18)(𝑛 , 20) before writing an incorrect 

answer of 20. 

Other students noticed a neater method by considering the exterior angles and then making 

their formula for the sum of exterior angles equal to 360° 

Many students were let down by their knowledge of algebraic manipulation. Again, the more 

able students showed a clear method(s) leading to a correct answer of 18. 

A trial and improvement approach was not an acceptable method. 

 

 

Question 24 

This question was not well attempted. Most students could not factorise by taking out – q at the 

beginning before completing the square and the manipulation of algebra was also difficult for 

many. Some students who initially factorised correctly lost marks later due to missing brackets 



 

when attempting to complete the square. Other examples of incorrect factorization were ,𝑞(𝑥2 , 12𝑥) + 𝑞… and to a lesser extent 𝑞(𝑥 , 6𝑥)2… these being quite common. Generally, 
this part of the paper was left unattempted by many. 

 

Only a minority of students gained full marks here. 

 

Summary 

Based on their performance in this paper, students should: 

• be able use formula given on formula sheet correctly  

• be able to apply differentiation in the context of a problem 

• be able to read graph scales accurately 

• read the question carefully and review their answer(s) to ensure that the question set is 

the one that has been answered and their answer(s) represent a reasonable size 

• make sure that their working is to a sufficient degree of accuracy that does not affect 

the required accuracy of the final answer 

• make their writing legible and their reasoning easy to follow 

• students must, when asked, show their working or risk gaining no marks despite correct 

answers 
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